
GFP Magneto fluorescence
View On GitHubView On GitHub

Download PDFDownload PDF

This project is maintained by Maria Ingaramo in the York lab, and was funded by

Calico Life Sciences LLC

Research article

Magnetic control of GFP-like fluorescent proteins

Rebecca Frank Hayward, Julia R. Lazzari-Dean, Andrew G. York* and Maria

Ingaramo†

Calico Life Sciences LLC, South San Francisco, CA 94080, USA
*Permanent email: andrew.g.york+magnetofluorescence@gmail.com
†Permanent email: maria.del.mar.ingaramo+magnetofluorescence@gmail.com

https://github.com/AndrewGYork/gfp_magnetofluorescence
file:///Users/ingaramo/Desktop/magnetofluorescence-main/gfp_magnetofluorescence.pdf
https://github.com/marimar128
http://andrewgyork.github.io/
https://www.calicolabs.com/
mailto:andrew.g.york+magnetofluorescence@gmail.com
mailto:maria.del.mar.ingaramo+magnetofluorescence@gmail.com


Artwork, a generous gift by Alexey Chizhik

Abstract

We've discovered a simple, nontoxic, biocompatible way to control the brightness

of GFP-like fluorescent proteins via modest magnetic fields (~10 mT). Fluorescent

proteins which seem magnetically inert (e.g. EGFP, mScarlet) become

magnetoresponsive in the presence of an appropriate cofactor (e.g. EGFP-FlavinTag,

or an mScarlet/FMN solution). This method works at room-temperature and body-
temperature, in vitro, in E. coli and in cultured mammalian cells.

The GFP-family magnetoresponse is weak ( ), but shows the

hallmarks of evolvability. This suggests exciting technological possibilities, both

short-term (e.g. lock-in detection, multiplexing) and long-term (e.g. optically-
detected MRI, magnetogenetics).

We've also discovered weak magnetoresponse from a member of the LOV-domain

family. This suggests the possibility that magnetoresponse is a general feature of

fluorescent proteins, and not unique to the cryptochrome/photolyase family.

ΔF/F ≈ 1%
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Introduction

Proteins that interact strongly with electromagnetic fields give us incredible power to

reveal and control biology. This “toolbox” is especially mature at optical frequencies, built

from a small set of ancestral proteins that evolved to respond to light (e.g. opsins, the LOV
domain, GFP) [Zhang 2011, Chapman 2008, Tsien 1998]. Almost any process (e.g.

transcription, oligomerization) or quantity (such as pH or voltage) in a transparent model

organism (like yeast, C. elegans, HeLa cells) can be measured or manipulated by a highly-

engineered derivative of these optically-active ancestors [Zhao 2022, Schoof 2021,

Kennedy 2010, Lazzari-Dean 2022, Berry 2020, Hochbaum 2014].

Unfortunately, mammals are optically opaque, and optogenetic tools only work in our

most superficial tissues. We’re exquisitely transparent at DC or RF frequencies, but the

“magnetogenetic toolbox” isn’t just immature - it’s nonexistent. Are there ancestral

proteins that respond strongly to low-frequency electromagnetic fields? If so, can we

engineer these ancestors, and expand the optogenetic revolution beyond yeast, worms
and cells, into a magnetogenetic toolbox for flies, mice, dogs - and humans? A candidate

ancestor for our toolbox must be robustly electromagnetically responsive in nontoxic

body-temperature liquid water, and this response must control downstream (opto)genetic

machinery.

https://cohenweb.rc.fas.harvard.edu/
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We first considered the cryptochrome/photolyase family (CRY/PHL) [Karki 2021], but found

that they fail badly as candidate ancestors. For example, CRY fluorescence is

magnetoresponsive [Kattnig 2016, Dejean 2020]; perhaps CRY could act as a magnetically-
actuated FRET-based "gate" between a luminescent protein and an optogenetic tool

[Carriba 2008, Lee 2023] . Unfortunately, this magnetoeffect is small (0.05% - 0.75%), and

CRY is at least a thousandfold(!) dimmer than GFP. Transient absorption of CRY/PHL is

also magnetoresponsive [Maeda 2012], but we don’t see how transient absorption can

control downstream machinery. Furthermore, these effects seem to require some
combination of near-freezing temperatures and toxic conditions (e.g. potassium

ferricyanide). CRY conformation and dimerization is optically responsive [Kennedy 2010],

but to our knowledge, this has never been controlled with a magnetic field, and we

suspect this is not for lack of trying.

We feared the magnetoresponse of organic molecules might be inherently weak - after all,
the decoupling of spin from a molecule's electronic, vibrational, rotational, or

conformational dynamics is what makes MRI so powerful. We were therefore shocked to

find a paper [Lee 2011] that showed a staggering ~80% change in a simple organic

fluorophore’s brightness, in response to a handheld magnet, at room temperature!

https://doi.org/10.1002/pro.4124
https://doi.org/10.1038/nchem.2447
https://doi.org/10.1039/D0SC01986K
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Video 1: Phenanthrene-(CH2)12-O-(CH2)2-dimethylaniline displays an impressive 80% fluorescence change in
response to a handheld magnet. Reproduced from [Lee 2011]

This powerful, robust magnetofluorescent response could easily control downstream

optogenetic machinery via FRET. Unfortunately, the fluorophore doesn't work in aqueous

solvent. Nonetheless, we were inspired - maybe no protein displays this physics, but it’s

not insane to hope one could.

Perhaps CRY/PHL's weak, fragile magnetoresponse is unique, and we should begin the

daunting process of engineering them into more robust magnetogenetic tools. However, if

protein magnetoresponse is common but simply underappreciated, we could save

countless years of engineering effort by finding a better starting point. Inspired by Lee et

al's demonstration of powerful magnetofluorescent response, we decided to look for
magnetoresponse from the family of GFP-like fluorescent proteins. GFP is arguably the

single most-studied, most-engineered, and most-used protein known to science. If we

can build magnetogenetics from the foundation of GFP, we immediately connect to a vast

body of existing knowledge, experience, and innovation.

https://doi.org/10.1021/nl202950h
https://en.wikipedia.org/w/index.php?title=Green_fluorescent_protein&oldid=1143612679


But does GFP respond in any way to magnetic fields? To our surprise and delight, it does.

Results

The fluorescence intensity of EGFP responds to magnetic fields in E. coli

We first noticed magnetofluorescent response from E. coli expressing EGFP, using a

simple epifluorescence microscope with a servomotor-mounted magnet above the sample.

The fluorescent brightness varied slightly but unmistakably as the field alternated from
ambient to ~25 mT. Of course, delightful but unexpected results are almost always

artifacts, so we began debugging.

Pure proteins are simpler to debug than bacteria, but to our surprise, when we purified the

EGFP, the magnetofluorescent effect disappeared (Figure 1 with Sample: EGFP alone

selected). Neither purified EGFP nor EGFP-negative bacterial lysate displayed measurable
magnetofluorescence, but mixing the two restored the effect. Filtering <7 kDa molecules

out of the lysate eliminated magnetoresponse, so we suspected some small molecule(s) in

the lysate were acting as cofactors for EGFP magnetofluorescence.

On a hunch, we screened a variety of metals, metabolites, and vitamins as potential

cofactors for EGFP magnetoresponse. After a long string of negative results, we finally
found a weak hit from an EGFP/riboflavin mixture, which inspired us to try other (more

soluble) flavins. A mixture of purified EGFP and flavin adenine dinucleotide (FAD) yielded

an exciting result: the EGFP fluorescence intensity varied by ~1% in response to a ~10 mT

field, in room-temperature, nontoxic aqueous buffer! (Figure 1 with Sample: EGFP plus FAD

photoproduct in vitro selected).

EGFP-FlavinTag: a candidate ancestor for the magnetogenetic toolbox

FAD is an ideal cofactor for our purposes. Flavins aren't just nontoxic - they're ubiquitous,

already present in most cells and tissues. Even better, we can use the FlavinTag system

[Tong 2021] to covalently bind flavin to EGFP, producing a simple genetically-expressed

biocompatible magnetically-controlled fluorescent molecule (Figure 1 with EGFP-FlavinTag

in E. coli selected). From an engineering perspective, this is an excellent candidate
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file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#instrumentation
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#debugging
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#sample_prep
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#exp_design
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#sequences
https://doi.org/10.1021/acs.bioconjchem.1c00306
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#sample_prep


ancestor for magnetogenetic tools: a bright, nontoxic, environmentally robust fluorophore

suitable for controlling downstream optogenetic machinery via FRET, building on the vast

and mature body of GFP-related technology. The intensity modulation (~0.25% at ~25 mT)
is much weaker than we'd prefer, but our construct is completely unoptimized for

magnetic response, and [Lee 2011] gives us hope that this could improve substantially

with further engineering.

Sample: EGFP-FlavinTag in E. coli
Figure 1. EGFP fluorescent brightness responds to magnetic fields, given appropriate cofactor(s). Top panels:
Conceptual animation of the experimental setup, which monitors fluorescent brightness of the sample as we turn a ~10

https://doi.org/10.1021/nl202950h
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#instrumentation
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#sample_prep


mT field on and off (~25 mT for the E. coli samples). Bottom panel: Measured fluorescence vs. time for the
experiment shown in the top panels. Gray (white) regions indicate the magnetic field is on (off). See the Appendix for
power and concentration dependence.

EGFP-FlavinTag is magnetoresponsive in vitro, and enzymatic removal of the FlavinTag

eliminates the magnetoresponse as expected. As shown in Figure 1, EGFP-FlavinTag

fluorescence is also magnetoresponsive in living bacteria. Note that while E. coli lysate
inspired our discovery of EGFP/flavin magnetofluorescence, this does not mean that flavin

was the (only) cofactor in the lysate; we suspect there are additional cofactors in E. coli

that we have yet to discover.

Flavins are also the cryptochrome (magneto)fluorescent cofactor. This is highly

suggestive, but we don't need flavin; we found several other small molecules which yield
magnetofluorescent response when mixed with EGFP. As shown in Figure 1 for various

choices of Sample:, hydroxykynurenine, 3-hydroxyanthranilic acid, cinnavalininate, and the

tetrazoleum viability stain WST-8 all function as EGFP magnetofluorescence cofactors in

vitro, although we find them less convenient than flavin. None of these cofactors yield

measurable magnetoresponse in the absence of EGFP (e.g. Figure 1 with Sample: FAD

alone), nor does FAD mixed with a non-fluorescent EGFP ∆Y66 mutant. We don't know how

to predict which molecules will work as magnetofluorescence cofactors, but even our

limited observations share features: small molecules with one or more aromatic rings that

participate in electron transfer and/or tryptophan metabolism [Ishiyama 1997, Farmer 2017,

Nakazawa 2009].

The fluorescence intensity of EGFP-FlavinTag responds to magnetic fields in

vivo

Our ultimate goal is to enable magnetogenetics in mammals, so we tested EGFP-

FlavinTag in cultured mammalian cells. As illustrated conceptually in Figure 2, the setup is

similar to our E. coli work, except now the EGFP-FlavinTag is expressed in COS7 cells
and targeted to the interior of the mitochondria via a COX8A localization sequence.
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Figure 2. EGFP-FlavinTag fluorescent brightness responds to magnetic fields inside living mammalian
mitochondria in cultured cells. Top panels: Conceptual animation of the experimental setup, which monitors
fluorescent brightness of the sample as we turn a ~10 mT field on and off. Bottom panel: Measured fluorescence vs.
time for the experiment shown in the top panels. Gray (white) regions indicate the magnetic field is on (off).

The GFP family is fluorescent in a remarkably wide range of conditions, which is crucial for

their utility. Nonetheless, the detailed fluorescent properties of the GFP family (e.g.

brightness, lifetime, bleaching/switching rates) depend on their environment (e.g. pH,

oxygen concentration, temperature) in a rich, complex way. We assume the

magnetoresponse of EGFP-FlavinTag also depends on its environment in a rich and
complex way, but it must retain at least some magnetoresponse in mammalian cells to be

useful for our purposes.

The magnetoresponse in COS7 cells (Figure 2) is different from E. coli (Figure 1), but

magnetoresponse is clearly present. We suspect the magnitude of the magnetoresponse

could be enhanced by extra flavin, perhaps via coexpression of FAD synthase [Tong 2022].
Traditionally, GFP's environmental dependence is either minimized via engineering to yield

file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#instrumentation
file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#sample_prep_mam
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tags, or accentuated and/or characterized to yield biosensors. We expect both

approaches will be similarly fruitful for magnetoresponsive proteins like EGFP-FlavinTag.

For now, though, we're simply happy that it seems to work at all in mammalian cells.

Magnetoresponse may be a generic feature of GFP-like fluorescent proteins

We observed at least some magnetoresponse in E. coli from several other GFP-like

fluorescent proteins, including mVenus, tdVenus, dsRed, and mScarlet. From a scientific

perspective, magnetoresponse seems far more common than we expected, which raises

countless questions beyond the scope of this manuscript. What is the mechanism of
magnetoresponse? What aspects of each fluorophore determine its magnetoresponsive

behavior? What are the physical limits on this reponse? From an engineering perspective,

our diverse starting points show the hallmark of evolvability: magnetoresponse is neither

insensitive to, nor intolerant of minor modifications (GFP→mVenus) and major

modifications (GFP→mScarlet) to the protein sequence. We also hope that a diverse
palette of absorption/emission colors will allow us to (eventually) connect a wide range of

chemiluminescent donors to a wide range of optogenetic acceptors via a

magnetoresponsive BRET-acceptor/FRET-donor intermediate [Carriba 2008, Takai 2015,

Lee 2023].

Purified mScarlet yields the largest protein magnetoresponse we've observed, almost 3%
when mixed with a flavin mononucleotide (FMN) photoproduct in vitro, as shown

conceptually (Figure 3) and quantitatively (Figure 4) below. mScarlet is arguably the best

red fluorescent protein ever engineered, so we're especially excited that such a promising

foundation yields such a large magnetoresponse [Bindels 2017]. We also expect red

fluorophores like mScarlet will be especially important for magnetogenetics with external
illumination or emission, because longer-wavelength light typically penetrates better in

translucent tissues.
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Sample: mScarlet + FMN photoproduct
Figure 3. mScarlet fluorescent brightness responds to magnetic fields, given an appropriate cofactor.
Conceptual animation of the experimental setup, which monitors fluorescent brightness of the sample as we turn a ~10
mT field on and off. See Figure 4 for measured data.

Like EGFP, we also found non-flavin small molecules which yield magnetofluorescent

response when mixed with mScarlet. As illustrated in Figure 3 and shown in Figure 4 for

various choices of Sample:, cinnavalininate and WST-8 function as mScarlet

magnetofluorescence cofactors in vitro. None of its cofactors yield measurable
magnetoresponse in the absence of mScarlet, nor does purified mScarlet in the absence

of a cofactor (e.g. Figure 4 with Sample: FMN alone... and Sample: mScarlet alone...).

Interestingly, several cofactors that yield EGFP magnetoresponse don't seem to work with

mScarlet (FAD, hydroxykynurenine, 3-hydroxyanthranilic acid), nor does FMN yield

measurable magnetoresponse when mixed with EGFP. Neither mScarlet-FlavinTag nor
FlavinTag-mScarlet fusions showed measurable magnetoresponse, but we intend to keep

trying (e.g. by varying the FlavinTag linker). In contrast, EGFP-FlavinTag worked on our

first try, but we suspect we just got lucky. We have no model to explain any of these

observations, but we hope some of our readers are qualified and inspired to tackle this

question (and the many other questions raised here).

Unlike EGFP, the excitation/emission spectrum of mScarlet is substantially different from

flavin, which gives us a convenient way to dissect the photophysics of flavin cofactors a

file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#instrumentation
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bit more. Cyan illumination (~470 ± 12 nm) preferentially excites flavin, while green

illumination (~550 ± 7.5 nm) preferentially excites mScarlet, and our emission filter (705 ±

36 nm) preferentially transmits mScarlet's emission. As shown below, this suggests that a
long-lived photoproduct of cyan-illuminated FMN is the magnetofluorescent cofactor for

mScarlet, rather than FMN itself.

Sample: mScarlet + FMN with 470 nm pre-excitation
Figure 4. mScarlet fluorescent brightness responds to magnetic fields, given an appropriate cofactor.
Measured fluorescence vs. time for the experiment shown in Figure 3. Gray (white) regions indicate the magnetic field
is on (off). Cyan (green) regions indicate the cyan (green) illumination is on. See the Appendix for additional controls.

Our non-flavin cofactors don't require cyan illumination to yield mScarlet

magnetoresponse, nor does mScarlet in E. coli. However, purified mScarlet mixed with
FMN yields almost ~3% magnetofluorescent response in the green/red channel (550 nm

excitation, 705 nm emission), if and only if it's pre-illuminated with cyan light (Figure 4

with Sample: mScarlet + FMN with/without 470 nm pre-excitation). There is measurable

fluorescence but no apparent magnetoresponse in the cyan/red channel during pre-

illumination (470 nm excitation, 705 nm emission). Green/red-channel magnetoresponse

file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#scarlet_controls


still occurs even if several minutes elapse between cyan illumination and green/red-

channel interrogation, suggesting a long-lived cyan-generated photoproduct. We suspect

the cyan-generated photoproduct is from FMN rather than mScarlet, based on their
absorption spectra, and we tenatively speculate that the long-lived state is an FMN

radical. We suspect that similar photophysics occurs for EGFP-FlavinTag and EGFP/FAD

mixtures, but the overlapping EGFP/flavin absorption/emission spectra obscure this

dynamic.

Magnetoresponse may be a generic feature of fluorescent proteins

We observed small but unmistakable magnetoresponse in E. coli from the LOV-family

protein AsLOV C450A V416T [Lungu 2012]. This was the first (and only) LOV-family protein

we checked, so we were quite surprised to get such an easy "hit" from essentially a shot

in the dark.

Figure 5. LOV-domain fluorescent brightness responds to magnetic fields. Measured fluorescence vs. time for an
experiment like the one shown in the top panels of Figure 1, except now the expressed protein is AsLOV C450A
V416T. Gray (white) regions indicate the magnetic field is on (off).

file:///Users/ingaramo/Desktop/magnetofluorescence-main/appendix.html#sequences
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Remarkably, we've found magnetoresponse in every family of fluorescent proteins we've

checked so far (CRY, GFP, and LOV). The CRY/PHL family is arguably the most well-

known and well-studied magnetoresponsive fluorophore, but in our hands, also the
weakest. From a scientific perspective, this raises fascinating questions. Are most (all?)

fluorescent proteins magnetoresponsive, given the right cofactor(s)? If so, why has the

field focused almost exclusively on CRY as the putative origin of animal

magnetosensation? Are proteins generally magnetoresponsive, but we only notice the

fluorescent ones because magnetofluorescence is easy to measure? From an engineering
perspective, we're excited by the possibility that LOV-family proteins can be magnetically

modulated, since they already form the foundation of so many successful optogenetic

tools, and have already been "powered" via BRET [Lee 2023]. We only checked for

magnetofluorescent response, but it would be extremely useful if LOV-family

magnetoresponse also directly affected conformation or dimerization. Depending on the
strength, sturdiness, and evolvability of GFP-family vs. LOV-family magnetoresponse, the

LOV family may prove to be a compelling candidate ancestor for magnetogenetics.

Discussion

The central scientific question raised by our observations is obviously: How and why do

fluorescent proteins respond to magnetic fields? Every paper we've read that discusses
magnetoresponsive proteins and/or fluorophores explains the phenomenon in terms of the

"radical pair" mechanism [Schulten 1976]. Like all of these papers, our simple observations

here neither prove nor disprove the relevance of this model. We're certainly eager to

understand the mechanism behind our observations, and we're happy to have a

candidate mechanism, but for now we prefer ignorance over misplaced confidence.

The central technological question raised by our observations is obviously: What are

magnetoresponsive fluorescent proteins good for? In the short-term, a magnetically-

switchable fluorophore enables "lock-in dection", meaning a signal that blinks over a

background that doesn't, yielding accurate background subtraction. Our

magnetoresponse also has a finite equilibration rate, which varies depending on the
protein sequence; if this rate is sufficiently independent of the environment, it allows

multiplexing, and if not, it allows biosensing [Peksağlam Seidel 2021]. Longer term, if

magnetically sensitive fluorescent proteins display magnetic resonance [Carbonera 2009],

https://doi.org/10.1101/2023.03.09.531939
https://doi.org/10.1524/zpch.1976.101.1-6.371
https://doi.org/10.5281/zenodo.5810930
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perhaps gradient fields and tuned microwave/RF pulses would allow MRI-like imaging

with optical readout in translucent samples or spatial confinement of magnetogenetic

control.

All of these questions require deep expertise and years of hard work. The questions raised

here fall at the intersection of quantum mechanics, biochemistry, invention, and

engineering, and will need input from almost every scientific discipline. Revealing and

understanding the GFP magnetofluorescent mechanism needs quantum chemists,

transient absorption spectroscopist, ESR and NMR experts. Enhancing the magnitude
and robustness of GFP magnetoresponse needs protein engineers, structural biologists,

biochemists, and biophysicists. Integrating magnetoresponsive proteins into useful

magnetogenetic circuits needs inventors, bioengineers, and biologists. We hope we've

inspired you to consider taking up part of this work; we certainly can't do it alone.
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