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Abstract

I'd like to invite you to consider one of my favorite physics questions, about how much

information we can squeeze out of optical measurements. Even if you don't know any

physics, the question translates cleanly to a pure mathematical puzzle, or alternatively,

a coding challenge that might be well suited to machine-learning approaches. This is an

old question, but an important one: optical measurements are an essential tool in every

field of science and industry, and any improvement to our ability to extract information

from light would have wide-ranging impact.
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Anyone who likes math puzzles, coding challenges, and/or physics questions. Click the

appropriate link below to jump to the relevant section:
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A math puzzle

Let's play a game. I know a complex number . Your job is to infer . You know that . *

You may choose any two complex numbers,  and . I will calculate . Then I'll draw

randomly from a Poisson distribution with expectation value , and tell you the (stochastic) result .

We repeat this process as many times as you'd like: on round , you choose  and , I'll calculate 

and I'll tell you . Your "cost" for round  is the quantity , and you have a "budget" of . If you

go over budget (meaning, if you choose a value  such that ), I won't answer, and the

game is over.

What algorithm should you follow to infer  as accurately** as possible, for a given value of ? Ideally,

express this algorithm as a short Python/Numpy script, ideally in a GitHub repository that I can link to

here. Feel free to invite anyone who's interested to play.

Let the best algorithm win!

Can you do any better than the algorithm ,  ?

Can you do any better than an algorithm where  and  are chosen in advance, independently of 

? For example:  and 

Notes:

* For Bayesians: I'll choose the magnitude  from a uniform distribution between  and , and I'll

choose the phase  from a uniform distribution between  and . Bonus points if your algorithm

works robustly (or can be easily adapted) if  is drawn from a different distribution.
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** Note I didn't define "accuracy"! I'll leave this intentionally flexible. I suspect the "ideal" algorithm

will depend on the choice of definition, but I'm indifferent as long as your definition of accuracy seems

sane to me.

A coding challenge

I've implemented an 'oracle' that will play a game with you. You can find a copy of the Python 3 code

in our adaptive_interference_inference GitHub repository: ./code/game.py

import numpy as np 

 

class Oracle: 

    def __init__(self, budget): 

        assert budget > 0 

        self.budget = budget 

        self.total_cost = 0 

        self.round = 0 

        self.a_history = [] 

        self.b_history = [] 

        self.r_history = [] 

        self.game_over = False 

         

        # Generate some secret numbers. 

        # Don't peek! 

        self._magnitude = np.random.random(1) 

        self._phase = 2*np.pi*np.random.random(1) 

        self._x = self._magnitude * np.exp(1j*self._phase) 

        return None 

 

    def ask(self, a, b): 

        if self.game_over: 

            return None 

        self.total_cost += np.abs(a)**2 

        if self.total_cost > self.budget: 

            self.game_over = True 

            return None 

        y = np.abs(a*self._x + b)**2 

        r = np.random.poisson(y) 

        self.round += 1 

        self.a_history.append(a) 

        self.b_history.append(b) 

        self.r_history.append(r) 

        return r 

To play this game, import game.py, choose a value for budget, and create an instance of the Oracle

object. Try to infer the value of Oracle._magnitude and/or Oracle._phase as accurately as you can, using

only the return values of calls to the Oracle.ask(a, b) method. You are allowed to inspect the code of

game.py, but after you instantiate an Oracle object, you are not allowed to inspect its Oracle._x,

Oracle._magnitude, or Oracle._phase attributes; that's cheating!***

file:///home/user/Downloads/adaptive_interference_inference-master/code/game.py


Here's an example of how you might use this oracle to play the game:

import numpy as np 

import game 

 

print("An example game") 

oracle = game.Oracle(budget=1000) 

print("Budget:", oracle.budget, '\n') 

num_phases = 5 

for phase_angle in np.arange(0, 2*np.pi, 2*np.pi/num_phases): 

    print('Round', oracle.round) 

    a = np.sqrt(oracle.budget / num_phases) * (1 - 1e-12) 

    b = a * np.exp(1j*phase_angle) 

    print(' a: %07s    (intensity)\n'%('%0.2f'%(np.abs(a)**2)), 

           '   %07s*pi (phase)'%('%0.2f'%(np.angle(a)/np.pi))) 

    print(' b: %07s    (intensity)\n'%('%0.2f'%(np.abs(b)**2)), 

           '   %07s*pi (phase)'%('%0.2f'%(np.angle(b)/np.pi))) 

    response = oracle.ask(a, b) 

    print('oracle.ask(a, b):', response) 

    print('Total cost: %0.2f / %0.2f\n'%(oracle.total_cost, 

                                              oracle.budget)) 

print("Game over.") 

print("From these responses, how well can you infer 'x'?") 

print("\nIf you'd made smarter choices of 'a' and 'b' on each round,\n", 

      "could you do a better job inferring 'x'?", sep='')

Note that this is just an example of how to ask the oracle questions. I didn't specify a method to infer

Oracle._x based on the oracle's responses to Oracle.ask(a, b). That's the game!

What's the best algorithm you can implement to infer the value of Oracle._x as accurately** as possible,

for a given value of Oracle.budget? Ideally, express this algorithm as a short Python/Numpy script,

ideally in a GitHub repository that I can link to here. Feel free to invite anyone who's interested to play.

Notes:

*** For machine-learners: feel free to inspect Oracle._x, Oracle._magnitude, and/or Oracle._phase while

you're training and validating a model, just be careful that your model doesn't consult these values.

A physics question

Suppose we want to measure the complex optical transmission coefficient  of a thin uniform flat-faced

slab of partially transparent unknown material
†
. When we transmit a collimated beam of

monochromatic light through the slab, the slab reduces the beam's amplitude by , and shifts the

beam's phase by . How accurately can we measure this change in intensity and phase?

Consider the ideal interferometric measurement shown in Figure 1 below:
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(Click the radio buttons to change the figure)

Interferometric measurement 

Object-free interferometric measurement  

Background intensity measurement  

Transmitted intensity measurement  

Figure 1: An unknown material sits in one arm of an ideal optical interferometer. The interfering beams are collimated,

monochromatic, perfectly coherent, and overlap perfectly at the outputs. The average number of photoelectrons  measured per

trial at Detector 1 is , where , , and  are complex numbers. Modulators  and  let us tune the amplitude and phase of 

and  respectively. The absorption and phase shift due to the material determines the amplitude and phase of .

We make a measurement by choosing the amplitude and phase for each modulator and counting

photoelectron "clicks" at Detector 1 for some time interval. Suppose that our source and our

interferometer are perfectly stable, and our detector never gives false detections
††

. Even in this ideal

case, the number of "clicks" we count is inherently stochastic. The number of clicks per trial at Detector

1 is drawn from a Poisson distribution
†††

 with expected value . How shall we infer ?

With the probe beam blocked (Fig. 1 with Measurement type: Background intensity measurement), we can

calibrate the reference beam signal  due to Modulator . Since the mean  of a Poisson process

grows faster than its standard deviation , we can calibrate the output amplitude of Modulator 

with arbitrarily high signal-to-noise ratio , by chasing the limit . Next, we can remove

the object (Fig. 1 with Measurement type: Object-free interferometric measurement) and use a similar

procedure to calibrate the output amplitude of Modulator , and also to calibrate how the modulators

tune the relative phase  between the probe and reference beams.
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With perfect knowledge and control of  and , we're ready to measure the complex transmission  of

our object. Let's add one additional constraint: for this measurement, we can't use an infinite amount

of light. Perhaps we're time-limited; our source has finite brightness, we have many objects to measure

today, and we can't spend as much time on one measurement as we did on calibration. Perhaps we're

dose-limited; too much light might melt or burn our unknown object. Either way, if the cumulative

"light dose"  at trial  exceeds our "dose budget" , we must stop measuring, and Poisson

noise limits our signal-to-noise ratio. What is our signal, and what is our noise?

Let's start with a simple measurement of  (how much the object reduces the probe beam's

amplitude; Fig. 1 with Measurement type: Transmitted intensity measurement). Each trial, Detector 1

yields a number of "clicks" drawn stochastically from a Poisson distribution with expectation value 

. Our noise is the standard deviation of this distribution, . Given our perfect knowledge of ,

our mean signal is the change in intensity , yielding a signal-to-noise ratio (SNR) of 

 for a single trial. Note that in the  limit of perfect transmission, the SNR tends to

zero. Similarly, in the  limit of perfect opacity, the SNR tends to infinity! This actually makes

sense: an object with sufficiently high transmission becomes invisible to a transmission measurement,

and a perfectly opaque object yields a detectable and fluctuation-free signal. Perhaps most interestingly,

if you count even a single "click", you know with complete confidence  and the object was not

perfectly opaque.

If we want to measure phase  in addition to amplitude , we must use interference (Fig. 1 with

Measurement type: Interferometric measurement). Our noise in this case is , and our signal is still

the change in intensity due to the object, , yielding an SNR of .

Like transmission measurements, our SNR can be infinite, but since we control  and , we can achieve

infinite SNR regardless of the value of ! All we have to do is choose , and we're guaranteed to

get a detectable, fluctuation-free signal with infinite SNR: zero "clicks". This is presumably insane, but

it raises some fun questions.

In order to achieve "infinite SNR", we must have chosen . But if we don't know  yet, how are

we supposed to choose  and ? Also, observing zero clicks doesn't guarantee ; maybe we just

didn't wait long enough for a click. Infinite SNR is therefore quite different from infinite precision.

However, if we observe even a single click on Detector 1, we know with certainty . This suggests

that if we view measurement as asking a question to the unknown object, the question "What are

you?" may be very different from the question "Are you this?". This second question has only two

possible answers: "maybe" (zero clicks after using up your entire dose budget) and "no" (the first click,

at which point you should probably halt the measurement and re-tune your modulators). Clearly there

are important clues encoded in how quickly the "no" is delivered.
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So, what algorithm should we use for tuning our modulators and drawing conclusions about ? My

suspicion is the optimal measurement will use an extremely small fixed value for  (virtually

guaranteeing zero or one "clicks" per trial), and choose a new  and  after every time the detector

clicks, hunting for the informative special case . I also suspect that the new choice of  should

be informed by how long each previous measurement took to produce its first click.

But I'm not going to solve this myself; I'd rather play the game with you. What algorithm would you

use? Ideally, express this algorithm as a short Python/Numpy script, ideally in a GitHub repository that

I can link to here. Feel free to invite anyone who's interested to play.

What does this teach us about measurement?

Does "infinite SNR" in a single trial actually indicate a high-precision measurement?

Do we actually benefit from "hunting" for perfect destructive interference at Detector 1, or would

we be better off searching a diverse set of ,  combinations?

How much better could you do if you also had access to "clicks" from Detector 2?

Notes:

†
This is an extremely common, extremely general problem. For example, this is the one-voxel limit of

nearly the entire field of transmitted light microscopy.

††
 This is consistent with the laws of physics, but an awful lot of work to achieve in practice.

†††
 For a discussion of this assertion, and many fascinating related issues, read the beautifully written

second chapter of The Quantum Challenge: Modern Research on the Foundations of Quantum

Mechanics by Greenstein and Zajonc.

What does this have to do with phase contrast microscopy?

In 1902, Siedentopf and Zsigmondy described the "ultramicroscope" [Siedentopf 1902], an early form of

"dark-field" microscopy. By 1920, dark-field microscopy was a mature, well-established technique [Gage

1920], and Zsigmondy was awarded the 1925 Chemistry Nobel “for his demonstration of the

heterogenous nature of colloid solutions and for the methods he used, which have since become

fundamental...”.
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Figure 2: Animation illustrating the key concepts of dark-field microscopy. A red light pulse illuminates a point-like

particle (small circle, left). The particle scatters some of this illumination light (expanding red circle). A lens (black oval, left)

focuses the illumination pulse onto a beam block (small rectangle, center), which is opaque and absorbs the illumination. Any

scattered light that passes through the first lens and is not absorbed by the beam block will pass through a second lens (black oval,

right) toward a multi-pixel detector (camera icon, far right), forming an image of the scattering particle on a dark background.

Figure 2 above illustrates the essential concept of dark-field microscopy: only the portion of the

illumination beam which is scattered by the sample can reach the detector. Scattering objects in the

sample appear as if they are emitting light, and this light is imaged onto the detector on a dark

background.

Decades later, Frits Zernike demonstrated "phase contrast" microscopy, [Zernike 1935, Zernike 1942].

Zernike was awarded the 1953 Nobel prize in Physics “for his demonstration of the phase contrast

method, especially for his invention of the phase contrast microscope.” [Zernike 1955].

Relative phase between background and scattered light: 

(Click the radio buttons to change the figure)

Constructive interference 

Destructive interference

Figure 3: Animation illustrating the key concepts of phase-contrast microscopy. A red light pulse illuminates a point-

like particle (small circle, left). The particle scatters some of this illumination light (expanding red circle). A lens (black oval, left)

focuses the illumination pulse onto a beam block (small rectangle, center), which is partially opaque and attenuates the illumination,

and also retards its phase. Any scattered light that passes through the first lens and is not absorbed by the beam block will pass

through a second lens (black oval, right) toward a multi-pixel detector (camera icon, far right), forming an image of the scattering

particle on a bright background.

As illustrated in Figure 3 above, phase contrast microscopy is conceptually similar to dark-field

microscopy. To convert our cartoon dark-field microscope to a phase-contrast microscope, we simply

replace the opaque beam block with a partially transmissive one. The attenuated illumination beam

yields a uniform background on the detector, which interferes coherently with the scattered light image.

The partially transmissive beam block also retards the phase of the background, and we can control this

retardation (e.g. by tuning the thickness of the block).

https://doi.org/10.1038/ncb1942
https://doi.org/10.1016/S0031-8914(42)80035-X
https://www.nobelprize.org/prizes/physics/1953/summary/
https://doi.org/10.1126/science.121.3141.345


For an appropriate retardation, the interference between the scattered light and the uniform

background can be primarily constructive (Figure 3 with Relative phase between background and

scattered light: Constructive interference). In this mode, scattering objects in the sample appear as if

they are emitting light, and this light is imaged onto the detector on a bright background.

It may not be immediately obvious why adding a bright background to a Nobel-prize-winning

background-free measurement merits another Nobel prize. Certainly, adding background light to an

optical measurement adds additional noise [Pawley 2006]. The critical detail is that Zernike added a

bright coherent background, which adds both additional noise and additional signal. How much signal,

and how much noise?

The total intensity  at a pixel of the detector in Figure 3 is proportional to 

, where  is the electric field at that pixel due to light scattered by the

point-like particle,  is the electric field at that pixel due to the coherent background, and  is the

relative phase between the two fields at that pixel. [Fowles 1989]. The number of photoelectrons

detected at that pixel during a measurement with duration  is drawn from a Poisson distribution with

mean  and standard deviation , where  is a proportionality constant depending on properties

of the detector [Fried 1965].

In the case of dark-field microscopy, . If there is no "stray" light or other noise sources, the

presence of the point-like particle changes the mean number of photoelectrons detected by our pixel,

from zero to . The standard deviation in the number of photoelectrons is the square root of this

mean. If we call the change in mean photoelectron number due to the point-like particle the "signal",

and the standard deviation the "noise", the per-pixel signal-to-noise ratio of dark-field microscopy is 

.

In the case of phase contrast microscopy, the presence of the point-like particle changes the mean

number of photoelectrons from  to . If the background 

 is extremely stable and well calibrated (as discussed above), and we call the change in mean

photoelectron number due to the point-like particle the "signal", and the standard deviation the

"noise", the per-pixel signal-to-noise ratio of phase-contrast microscopy is 

.

In the limits  (large background),  (parallel fields) and 

(retardance tuned for high-contrast interference), we can make the approximations 

 , and the signal-to-noise ratio of phase-constrast microscopy simplifies
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considerably to . In this limit, we see that phase contrast microscopy

doubles the signal-to-noise ratio of dark-field!

I suspect that the 1953 Nobel was given for a more practical reason: in addition to doubling the signal-

to-noise ratio, phase contrast microscopy (with well-tuned retardance) greatly amplifies both the

photon-counting noise and the signal. Other sources of noise (e.g. stray light) are "washed out" by the

coherently amplified signal. Zernike discusses this point in his Nobel lecture:

In my own experiments I could go down to 4-percent transmission, that is, a 5-times enhanced

contrast, the limit being set by the unavoidable stray light. It is only under especially favorable

circumstances that a higher increase has been attained by the French astronomer Lyot. In his study

of the minute ripples of polished lens surfaces he had independently rediscovered phase contrast and

could use strips that diminished the amplitude to one-thirtieth, so that ripples only one one-

thousandth of a wavelength high showed in good contrast. [Zernike 1955]

This raises a natural question: in the case of no stray light, for a given signal field , what choice of

background field amplitude  and relative phase  will give optimal signal-to-noise ratio? Naively

inspecting our previous equations leads us to a curious result. If we happen to choose a background field

that perfectly cancels our signal field, that is, , then our noise goes to

zero, but our signal does not!

This is the origin of the question in our title, and the math, coding, and physics questions that follow.

While I have no expectation that "infinite" signal-to-noise ratio allows perfect inference of our sample's

optical properties, it's still highly suggestive, and interesting to explore what inference it does allow. For

mathematical simplicity, I reduced the multi-pixel phase-contrast microscope shown in Figure 3 to the

single-pixel interferometer shown in Figure 1, but clearly insight in one case leads directly to insight in

the other. If the "infinite" signal-to-noise ratio case actually yields superior inference, one could imagine

imaging methods that tune a multi-pixel spatial light modulator in one arm of an interferometer to

cancel the fields transmitted by an unknown object in the other arm.

I also think the underlying inference question is a timeless combination of importance and simplicity,

which is why I've reduced it to a math puzzle, a coding challenge, and a physics question, rather than

simply answering it. I think this document does more good as a challenge than as a reference.

Who wants to play my game?
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